高精度(加减乘除)
高精度加法
#include
#include
#include
using namespace std;
vector add(vector &A, vector &B) {
vector C;
int t = 0;
if (A.size() < B.size())
return add(B, A);
for (int i = 0; i < A.size(); i ++ ) {
t += A[i];
if (i < B.size())
t += B[i];
C.push_back(t % 10);
t /= 10;
}
if (t)
C.push_back(1);
return C;
}
int main() {
string a, b;
cin >> a >> b;
vector A, B;
for (int i = a.size() - 1; i >= 0; i -- )
A.push_back(a[i] - '0');
for (int i = b.size() - 1; i >= 0; i -- )
B.push_back(b[i] - '0');
vector C = add(A, B);
for (int i = C.size() - 1; i >= 0; i -- )
cout << C[i];
return 0;
}
高精度减法
#include
#include
#include
using namespace std;
bool cmp(vector &A, vector &B) {
if (A.size() != B.size())
return A.size() >= B.size();
for (int i = A.size() - 1; i >= 0; i -- )
if (A[i] != B[i])
return A[i] >= B[i];
return true;
}
vector sub(vector &A, vector &B) {
vector C;
for (int i = 0, t = 0; i < A.size(); i ++ ) {
t = A[i] - t;
if (i < B.size())
t -= B[i];
C.push_back((t + 10) % 10);
if (t < 0)
t = 1;
else
t = 0;
}
while (C.size() > 1 && C.back() == 0)
C.pop_back();
return C;
}
int main() {
string a, b;
cin >> a >> b;
vector A, B;
for (int i = a.size() - 1; i >= 0; i -- )
A.push_back(a[i] - '0');
for (int i = b.size() - 1; i >= 0; i -- )
B.push_back(b[i] - '0');
vector C;
if (cmp(A, B))
C = sub(A, B);
else {
C = sub(B, A);
cout << '-';
}
for (int i = C.size() - 1; i >= 0; i -- )
cout << C[i];
return 0;
}
高精度乘法(高精度乘低精度)
#include
#include
#include
using namespace std;
vector mul(vector &A, int b) {
vector C;
for (int i = 0, t = 0; i < A.size() || t; i ++ ) {
if (i < A.size())
t += A[i] * b;
C.push_back(t % 10);
t /= 10;
}
while (C.size() > 1 && C.back() == 0)
C.pop_back();
return C;
}
int main() {
string a;
int b;
cin >> a >> b;
vector A;
for (int i = a.size() - 1; i >= 0; i -- )
A.push_back(a[i] - '0');
vector C;
C = mul(A, b);
for (int i = C.size() - 1; i >= 0; i -- )
cout << C[i];
return 0;
}
高精度乘法(高精度乘高精度)
(暴力是O(n^2)的,还有一个FFT的算法让时间费用更低,但是奈何本蒟蒻实在是不会啊~QAQ)
#include
using namespace std;
const int N = 1e5+10,M= 2e5+10;
int a[M],b[M],l1,l2;
char s[N];
void print(int a[])
{
int k=M-1;
while(k && !a[k]) k--;
for(int i=k;i>=0;i--) cout<
高精度除法(高精度除以低精度)
#include
#include
#include
#include
using namespace std;
vector div(vector &A, int b)
{
vector C;
int t = 0;
for(int i = A.size() - 1; i >= 0; i -- )
{
t = t * 10 + A[i];
C.push_back(t / b);
t %= b;
}
reverse(C.begin(), C.end());
while(C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
int main()
{
string a;
int b;
cin >> a >> b;
vector A;
for(int i = a.size() - 1; i >= 0; i -- ) A.push_back(a[i] - '0');
vector C;
C = div(A,b);
for(int i = 0; i < C.size(); i ++ )
cout << C[i];
return 0;
}
相关