[AcWing 3] 完全背包问题


1. 朴素做法(会超时)


点击查看代码
#include

using namespace std;
const int N = 1010;

int n, m;
int v[N], w[N];
int f[N][N];

int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n; i ++)   cin >> v[i] >> w[i];
    for (int i = 1; i <= n; i ++)
        for (int j = 0; j <= m; j ++)
            for (int k = 0; k * v[i] <= j; k ++)
                f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
    cout << f[n][m] << endl;
    return 0;
}

  1. $ f[i][j] $ 需要更新的情况:
    \(k\)\(k\) 可以为 \(0\))个第 \(i\) 个物品,前提是能够装得下 \(k\) 个第 \(i\) 个物品,也就是 \(j >= k \cdot v[i]\),在这种情况下,还需要在前 \(i - 1\) 个物品中选择,背包容量为 \(j - k \cdot v[i]\),也就是 \(f[i - 1][j - k \cdot v[i]]\),最后的 $f[i][j] = f[i - 1][j - k \cdot v[i]] + k \cdot w[i] $
  2. 状态转移:$ f[i][j] = max( f[i - 1][j - k \cdot v[i]] + k \cdot w[i] )$ $ (k = 0, 1, 2, \cdots ,\left \lfloor \frac{j}{v{i}} \right \rfloor) $

2. 优化(二维数组)


点击查看代码
#include

using namespace std;
const int N = 1010;

int n, m;
int v[N], w[N];
int f[N][N];

int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n; i ++)   cin >> v[i] >> w[i];
    for (int i = 1; i <= n; i ++)
        for (int j = 0; j <= m; j ++) {
            f[i][j] = f[i - 1][j];
            if (j >= v[i])
                f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i]);
        }
    cout << f[n][m] << endl;
    return 0;
}


3. 一维数组进一步优化


点击查看代码
#include

using namespace std;
const int N = 1010;

int n, m;
int v[N], w[N];
int f[N];

int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n; i ++)   cin >> v[i] >> w[i];
    for (int i = 1; i <= n; i ++)
        for (int j = v[i]; j <= m; j ++)
                f[j] = max(f[j], f[j - v[i]] + w[i]);
    cout << f[m] << endl;
    return 0;
}

相关