akshare股市新闻情绪判断
# -*- coding: utf-8 -*-
import time
import akshare as ak
from snownlp import SnowNLP
# 使用snownlp
stock_code = '603777'
date = time.strftime("%Y%m%d", time.localtime())
stock_news_em_df = ak.stock_news_em(stock=stock_code)
for i in stock_news_em_df.values[:, 1]:
text=str(i)
# text = u'中国人是好人'
s = SnowNLP(text)
for sentence in s.sentences:
print(sentence, SnowNLP(sentence).sentences)
print(s.sentiments)
print(s.keywords(3))
print(s.summary(3))
# 小于0.4的为消极,否则为积极
if s.sentiments<0.4:
print('##########消极',i)
elif s.sentiments>=0.4:
print('##########积极',i)
2
# 使用nltk
# from nltk.sentiment.vader import SentimentIntensityAnalyzer as sia
# import nltk
# import time
# import akshare as ak
# import jieba as jb
#
# # nltk.set_proxy('SYSTEM PROXY')
# # nltk.download('vader_lexicon')
#
# stock_code='603777'
# date=time.strftime("%Y%m%d", time.localtime())
# # sentences = ['This is the worst lunch I ever had!',
# # 'This is the best lunch I have ever had!!',
# # 'I don\'t like this lunch.',
# # 'I eat food for lunch.',
# # 'Red is a color.',
# # 'A really bad, horrible book, the plot was .']
# # '''每日快讯'''
# # stock_zh_a_alerts_cls_df = ak.stock_zh_a_alerts_cls()
# # '''当日最近 4 小时内的新闻资讯数据'''
# # js_news_df = ak.js_news(timestamp=date + "11:27:18")
# '''个股当日最近 20 条新闻资讯数据'''
# stock_news_em_df = ak.stock_news_em(stock=stock_code)
# sentences=[]
# for i in stock_news_em_df.values[:,1]:
# seg_list = jb.cut_for_search(i)
# print(", ".join(seg_list))
# sentences.append(", ".join(seg_list))
# hal = sia()
# for sentence in sentences:
# print(sentence)
# ps = hal.polarity_scores(sentence)
# for k in sorted(ps):
# print('\t{}: {:>1.4}'.format(k, ps[k]), end=' ')
# print()
3
# 使用fair
# from flair.models import TextClassifier
# from flair.data import Sentence
#
# sia = TextClassifier.load('en-sentiment')
#
#
# def flair_prediction(x):
# sentence = Sentence(x)
# sia.predict(sentence)
# score = sentence.labels[0]
# if "POSITIVE" in str(score):
# return "pos"
# elif "NEGATIVE" in str(score):
# return "neg"
# else:
# return "neu"
#
# flair_prediction('hahahahah')