[SDOI2017]数字表格
\(\text{Problem}\)
\[\prod_{i=1}^n \prod_{j=1}^m f({\gcd(i,j)}) \]其中
\[f(n)= \begin{cases} 0 & n=0 \\ 1 & n=1 \\ f(n-1)+f(n-2) & n > 1 \end{cases} \]\(T\) 组数据,\(1 \le T \le 10^3,1 \le n,m \le 10^6\)
\(\text{Analysis}\)
\[\begin{aligned} \prod_{i=1}^n \prod_{j=1}^m f_{\gcd(i,j)} &= \prod_{d=1} f(d)^{\sum_{d|i} \sum_{d|j} [\gcd(i,j)=d]} \end{aligned} \]我们把指数抽出来处理
\[\begin{aligned} \sum_{d|i} \sum_{d|j} [\gcd(i,j)=d] &= \sum_{i=1} \sum_{j=1} [\gcd(i,j)=1] \\ &= \sum_{g=1} \mu(g) \lfloor \frac{n}{dg} \rfloor \lfloor \frac{m}{dg} \rfloor \end{aligned} \]令 \(T=dg\),那么把外面的积式也换乘 \(T\)
那么就得到了
\(\prod_{d|T} f(d)^{\mu(\frac{T}{d})}\) 这一部分直接 \(O(n \log n)\) 预处理即可
然后数论分快解决
\(\text{Code}\)
#include
#include
#define re register
using namespace std;
typedef long long LL;
const int N = 1e6, P = 1e9 + 7;
int n, m, k, totp, pr[N], vis[N + 5], sum[N + 5], mu[N + 5], f[N + 5], g[N + 5];
LL F[N + 5];
inline int fpow(LL x, LL y)
{
LL res = 1;
for(; y; y >>= 1)
{
if (y & 1) res = res * x % P;
x = x * x % P;
}
return res;
}
inline void Euler()
{
vis[1] = mu[1] = f[1] = g[1] = F[0] = F[1] = 1;
for(re int i = 2; i <= N; i++)
{
f[i] = (f[i - 1] + f[i - 2]) % P, g[i] = fpow(f[i], P - 2), F[i] = 1;
if (!vis[i]) pr[++totp] = i, mu[i] = -1;
for(re int j = 1; j <= totp && i * pr[j] <= N; j++)
{
vis[i * pr[j]] = 1;
if (!(i % pr[j])) break;
mu[i * pr[j]] = -mu[i];
}
}
for(re int i = 1; i <= N; i++)
{
if (!mu[i]) continue;
for(re int j = i; j <= N; j += i)
F[j] = F[j] * (mu[i] == 1 ? f[j / i] : g[j / i]) % P;
}
for(re int i = 2; i <= N; i++) F[i] = F[i] * F[i - 1] % P;
}
int main()
{
freopen("product.in", "r", stdin);
freopen("product.out", "w", stdout);
Euler();
int T; scanf("%d", &T);
for(; T; --T)
{
scanf("%d%d", &n, &m);
LL ans = 1;
for(re int l = 1, r, v; l <= min(n, m); l = r + 1)
{
r = min(n / (n / l), m / (m / l));
v = F[r] * fpow(F[l - 1], P - 2) % P;
ans = ans * fpow(v, (LL)(n / l) * (m / l) % (P - 1)) % P;
}
printf("%lld\n", ans);
}
}