Leetcode144 二叉树的前序遍历


二叉树的前序遍历

题目描述

给你二叉树的根节点 root ,返回它节点值的 前序 遍历。

示例 1:

img

输入:root = [1,null,2,3]
输出:[1,2,3]

示例 2:

输入:root = []
输出:[]

示例 3:

输入:root = [1]
输出:[1]

方法一:递归

对于树的遍历来说,递归的方法永远是最简单的。

前序遍历:根->左子树->右子树。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List preorderTraversal(TreeNode root) {
        List ans = new ArrayList<>();
        
        preOrder(ans, root);
        return ans;
    }

    private void preOrder(List ans, TreeNode root) {
        if (root!=null) {
            ans.add(root.val);
            preOrder(ans, root.left);
            preOrder(ans, root.right);
        }
    }
}

方法二:迭代

? 我们也可以用迭代的方式实现方法一的递归函数,两种方式是等价的,区别在于递归的时候隐式地维护了一个栈,而我们在迭代的时候需要显式地将这个栈模拟出来,其余的实现与细节都相同,具体可以参考下面的代码。

? 思路:针对二叉树先序遍历 根->左子树->右子树 的顺序

  • 对于每一个结点,我们一直遍历到它的最左边
  • 然后返回上一个结点
  • 再遍历它的右边。
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List preorderTraversal(TreeNode root) {
        List ans = new ArrayList<>();
        Stack stack = new Stack<>();
        while (root!=null || !stack.isEmpty()) {
            while (root!=null) {
                ans.add(root.val);
                stack.add(root);
                root = root.left;
            }
            root = stack.pop();
            root = root.right;
        }
        return ans;
    }
}

方法三:Morris 遍历

Morris 遍历的核心思想是利用树的大量空闲指针,实现空间开销的极限缩减。其前序遍历规则总结如下:

  1. 新建临时节点,令该节点为 root
  2. 如果当前节点的左子节点为空,将当前节点加入答案,并遍历当前节点的右子节点;
  3. 如果当前节点的左子节点不为空,在当前节点的左子树中找到当前节点在中序遍历下的前驱节点:
    • 如果前驱节点的右子节点为空,将前驱节点的右子节点设置为当前节点。然后将当前节点加入答案,并将前驱节点的右子节点更新为当前节点。当前节点更新为当前节点的左子节点。
    • 如果前驱节点的右子节点为当前节点,将它的右子节点重新设为空。当前节点更新为当前节点的右子节点。
  4. 重复步骤 2 和步骤 3,直到遍历结束。

image-20220309150938136

class Solution {
    public List preorderTraversal(TreeNode root) {
        List res = new ArrayList();
        if (root == null) {
            return res;
        }

        TreeNode p1 = root, p2 = null;

        while (p1 != null) {
            p2 = p1.left;
            if (p2 != null) {
                while (p2.right != null && p2.right != p1) {
                    p2 = p2.right;
                }
                if (p2.right == null) {
                    res.add(p1.val);
                    p2.right = p1;
                    p1 = p1.left;
                    continue;
                } else {
                    p2.right = null;
                }
            } else {
                res.add(p1.val);
            }
            p1 = p1.right;
        }
        return res;
    }
}