CF1152E Neko and Flashback——欧拉路径
RemoteJudge
第一次见到欧拉路径的题
注意到\(b\)和\(c\)的构造方法很特殊,即对于一个位置(经过\(p\)作用后)\(i\),若两个数分别为\(b_i\)和\(c_i\),那么在\(a\)中\(b_i\)与\(c_i\)相邻
其实\(p\)并没有什么用
从每一个\(b_i\)向\(c_i\)连边,那么问题转化为是否存在一条长度为\(n\)的欧拉路径,直接\(dfs\)就行了
几个\(-1\)的情况:
1.存在\(i\),使得\(b_i> c_i\)
2.不存在欧拉路径
3.求出来的路径长度不为\(n\)
上代码:
//
// _ooOoo_
// o8888888o
// 88" . "88
// (| -_- |)
// O\ = /O
// ____/`---'\____
// .' \\| |// `.
// / \\||| : |||// \
// / _||||| -:- |||||- \
// | | \\\ - /// | |
// | \_| ''\---/'' | |
// \ .-\__ `-` ___/-. /
// ___`. .' /--.--\ `. . __
// ."" '< `.___\_<|>_/___.' >'"".
// | | : `- \`.;`\ _ /`;.`/ - ` : | |
// \ \ `-. \_ __\ /__ _/ .-` / /
// ======`-.____`-.___\_____/___.-`____.-'======
// `=---='
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// 佛祖保佑 全是BUG
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include