LFU
460. LFU Cache
Hard
Design and implement a data structure for a Least Frequently Used (LFU) cache.
Implement the LFUCache
class:
LFUCache(int capacity)
Initializes the object with thecapacity
of the data structure.int get(int key)
Gets the value of thekey
if thekey
exists in the cache. Otherwise, returns-1
.void put(int key, int value)
Update the value of thekey
if present, or inserts thekey
if not already present. When the cache reaches itscapacity
, it should invalidate and remove the least frequently used key before inserting a new item. For this problem, when there is a tie (i.e., two or more keys with the same frequency), the least recently usedkey
would be invalidated.
To determine the least frequently used key, a use counter is maintained for each key in the cache. The key with the smallest use counter is the least frequently used key.
When a key is first inserted into the cache, its use counter is set to 1
(due to the put
operation). The use counter for a key in the cache is incremented either a get
or put
operation is called on it.
The functions get
and put
must each run in O(1)
average time complexity.
Example 1:
Input ["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]] Output [null, null, null, 1, null, -1, 3, null, -1, 3, 4] Explanation // cnt(x) = the use counter for key x // cache=[] will show the last used order for tiebreakers (leftmost element is most recent) LFUCache lfu = new LFUCache(2); lfu.put(1, 1); // cache=[1,_], cnt(1)=1 lfu.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1 lfu.get(1); // return 1 // cache=[1,2], cnt(2)=1, cnt(1)=2 lfu.put(3, 3); // 2 is the LFU key because cnt(2)=1 is the smallest, invalidate 2. // cache=[3,1], cnt(3)=1, cnt(1)=2 lfu.get(2); // return -1 (not found) lfu.get(3); // return 3 // cache=[3,1], cnt(3)=2, cnt(1)=2 lfu.put(4, 4); // Both 1 and 3 have the same cnt, but 1 is LRU, invalidate 1. // cache=[4,3], cnt(4)=1, cnt(3)=2 lfu.get(1); // return -1 (not found) lfu.get(3); // return 3 // cache=[3,4], cnt(4)=1, cnt(3)=3 lfu.get(4); // return 4 // cache=[3,4], cnt(4)=2, cnt(3)=3
Constraints:
0 <= capacity <= 104
0 <= key <= 105
0 <= value <= 109
- At most
2 * 105
calls will be made toget
andput
.
class LFUCache { class Node{ int key; int val; int freq; int seq; Node(int key,int val,int seq){ this.key=key; this.val=val; this.seq=seq; this.freq=1; } } PriorityQueuepq; HashMap map; int currseq = 0; int cap=0; public LFUCache(int capacity) { this.cap = capacity; pq = new PriorityQueue ((x,y)->{ if( x.freq != y.freq ) return x.freq-y.freq; return x.seq-y.seq; }); map = new HashMap(); } public int get(int key) { if(cap==0) return -1; //0.get Node with key Node node = map.get(key); //1.if key exists if(node!=null){ //remove from pq pq.remove(node); //let freq++; node.freq++; node.seq=currseq++; //add to pq again pq.offer(node); //return val; return node.val; } //2.key not exists else return -1; } public void put(int key, int value) { if(cap==0) return; //0.get Node with key Node node = map.get(key); //1.if key exists if(node!=null){ //set the new value node.val=value; //remove from pq pq.remove(node); //let freq++; node.seq=currseq++; node.freq++; //add to pq again pq.offer(node); } //2.key not exists else{ //new Node node = new Node(key,value,currseq++); //if the map is full if(map.size()==cap){ Node temp = pq.poll(); map.remove(temp.key); } //put it into pq pq.offer(node); //put it into map map.put(key,node); } } }