文献学习——MUStICCa: MUS Extraction with Interactive Choice of Candidates
可视化计算SAT公式不满足的最小解释;
MUStICCa: MUS Extraction with Interactive Choice of Candidates
Johannes Dellert, Christian Zielke, and Michael Kaufmann
University of T¨ubingen, Germany
Abstract
Existing algorithms for minimal unsatisfiable subset (MUS) The MUStICCa tool introduces a novel graphical user |
|
The tool is centered around an explicit visualization of the explored |
|
While inspecting the contents of any US, the user 译文:当检查任何US的内容时,用户可以选择候选子句来发起删除尝试。 |
|
The reduction |
|
MUStICCa |
|
For automatization, our tool includes a reduction agent mechanism into |
1 Introduction and Motivation
With a remarkable amount of recent work (e.g. [13,3,17]) on algorithms for computing 译文:最小不可满足子集(MUS)提取领域已经成为SAT社区的一个新兴研究领域,导致2011年SAT竞赛[16]引入了一个MUS轨道。 |
|
The algorithms for MUS extraction can be characterized as constructive, destructive |
|
We introduce a completely new approach to guiding the destructive MUS The central idea of destructive MUS extraction, The idea of interactive MUS extraction
This feature will not only help domain 译文:这一特性不仅有助于领域专家(他们通常对好的解释相关的条款有良好的直觉)找到不满足的有意义的解释,而且有助于研究人员和学生分析不满足的实例,评估不同启发式选择删除候选的效果。 |
|
By default, MUStICCa’s graphical user interface (see Figure 1) consists of |
|
|
|
The central view is a representation of the current |
|
Our tool automatically |
|
The paper is organized as follows: Section 2 introduces the user interface, describes The tool can |
|
References
1. Bakker, R.R., Dikker, F., Tempelman, F., Wognum, P.: Diagnosing and Solving
Over-Determined Constraint Satisfaction Problems. In: Proceedings of IJCAI 1993,
pp. 276–281. Morgan Kaufmann (1993)
2. Belov, A., Ivrii, A., Matsliah, A., Marques-Silva, J.: On Efficient Computation of
Variable MUSes. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317,
pp. 298–311. SAT, Heidelberg (2012)
3. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Commun.
25(2), 97–116 (2012)
4. Chinneck, J.W., Dravnieks, E.W.: Locating Minimal Infeasible Constraint Sets in
Linear Programs. INFORMS Journal on Computing 3(2), 157–168 (1991)
5. Dellert, J.: Interactive Extraction of Minimal Unsatisfiable Cores Enhanced By
Meta Learning. Diplomarbeit, Universit¨at T¨ubingen (2013)
6. Desrosiers, C., Galinier, P., Hertz, A., Paroz, S.: Using heuristics to find minimal
unsatisfiable subformulas in satisfiability problems. J. Comb. Optim. 18(2), 124–
150 (2009)
7. Evang, K., Dellert, J.: Kahina - Trac. Web (2013), http://www.kahina.org/trac
8. Kullmann, O.: On the use of autarkies for satisfiability decision. Electronic Notes
in Discrete Mathematics 9, 231–253 (2001)
9. Liffiton, M.: Mark Liffiton - CAMUS. Web (2013),
http://sun.iwu.edu/~mliffito/camus (access date: January 22, 2013)
10. Liffiton, M.H., Malik, A.: Enumerating Infeasibility: Finding Multiple MUSes
Quickly. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp.
160–175. Springer, Heidelberg (2013)
11. Nadel, A.: Boosting minimal unsatisfiable core extraction. In: FMCAD, pp. 221–
229 (2010)
12. Oh, Y., Mneimneh, M.N., Andraus, Z.S., Sakallah, K.A., Markov, I.L.: AMUSE: a
minimally-unsatisfiable subformula extractor. In: DAC, pp. 518–523 (2004)
13. Ryvchin, V., Strichman, O.: Faster Extraction of High-Level Minimal Unsatisfiable
Cores. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 174–187.
Springer, Heidelberg (2011)
14. Silva, J.P.M.: Minimal Unsatisfiability: Models, Algorithms and Applications (Invited
Paper). In: ISMVL, pp. 9–14 (2010)
15. Sinz, C., Kaiser, A., K¨uchlin, W.: Formal Methods for the Validation of Automotive
Product Configuration Data. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing 17(1), 75–97 (2003); special issue on configuration
16. The SAT association: The international SAT Competitions web page. Web (2011),
http://www.satcompetition.org/
17. Wieringa, S.: Understanding, Improving and Parallelizing MUS Finding Using
Model Rotation. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 672–687.
Springer, Heidelberg (2012)