【15】同一条件下不同积分不等式的证明


条件:\(\displaystyle f\left( x \right)\)\(\displaystyle \left[ 0,1 \right]\)上连续,\(\displaystyle f\left( x \right) \geqslant 0\),且对\(\displaystyle \forall x\in \left[ 0,1 \right]\)

\[\int_x^1{f\left( t \right) \text{d}t}\geqslant \frac{1-x^2}{2} \]

问题:

\[\int_0^1{f^2\left( x \right) \text{d}x}\geqslant \frac{1}{3}\tag{1} \]

\[\int_0^1{x^{n+1}f\left( x \right) \text{d}x}\geqslant \frac{1}{n+3}\tag{2} \]

\[\int_0^1{f^{n+1}\left( x \right) \text{d}x}\geqslant \int_0^1{x^nf\left( x \right) \text{d}x}\tag{3} \]

\[\int_0^1{f^{n+1}\left( x \right) \text{d}x}\geqslant \int_0^1{xf^n\left( x \right) \text{d}x}\tag{4} \]


过程如下:
(1)由于

\[\begin{align*} \int_0^1{\left[ f\left( x \right) -x \right] ^2\text{d}x}&=\int_0^1{f^2\left( x \right) \text{d}x}-2\int_0^1{xf\left( x \right) \text{d}x}+\int_0^1{x^2\text{d}x} \\ &=\int_0^1{f^2\left( x \right) \text{d}x}-2\int_0^1{xf\left( x \right) \text{d}x}+\frac{1}{3} \\ &\geqslant 0 \end{align*} \]

所以有

\[\begin{align*} \int_0^1{f^2\left( x \right) \text{d}x}&\geqslant 2\int_0^1{xf\left( x \right) \text{d}x}-\frac{1}{3} \\ &=-2\int_0^1{x\text{d}\left( \int_x^1{f\left( t \right) \text{d}t} \right)}-\frac{1}{3} \\ &=-2x\int_x^1{f\left( t \right) \text{d}t}\mid_{0}^{1}+2\int_0^1{\left( \int_x^1{f\left( t \right) \text{d}t} \right) \text{d}x}-\frac{1}{3} \\ &\geqslant 2\int_0^1{\frac{1-x^2}{2}\text{d}x}-\frac{1}{3} \\ &=\frac{1}{3} \end{align*} \]

不等式(1)证毕.

(2)直接凑微分与分部积分,有

\[\begin{align*} \int_0^1{x^{n+1}f\left( x \right) \text{d}x}&=-\int_0^1{x^{n+1}\text{d}\left( \int_x^1{f\left( t \right) \text{d}t} \right)} \\ &=\left( n+1 \right) \int_0^1{x^n\left( \int_x^1{f\left( t \right) \text{d}t} \right) \text{d}x} \\ &\geqslant \frac{n+1}{2}\int_0^1{\left( x^n-x^{n+2} \right) \text{d}x} \\ &=\frac{n+1}{2}\cdot \left( \frac{1}{n+1}-\frac{1}{n+3} \right) \\ &=\frac{1}{n+3} \end{align*} \]

不等式(2)证毕.

(3)利用均值不等式,我们得到

\[f^{n+1}\left( x \right) +nx^{n+1}\geqslant \left( n+1 \right) x^nf\left( x \right) \]

对上述不等式两边同时对\(\displaystyle x\)在0到1上积分,并利用不等式(2),我们得到

\[\begin{align*} \int_0^1{f^{n+1}\left( x \right) \text{d}x}+\frac{n}{n+2}&\geqslant \left( n+1 \right) \int_0^1{x^nf\left( x \right) \text{d}x} \\ &=n\int_0^1{x^nf\left( x \right) \text{d}x}+\int_0^1{x^nf\left( x \right) \text{d}x} \\ &\geqslant \frac{n}{n+2}+\int_0^1{x^nf\left( x \right) \text{d}x} \end{align*} \]

因此

\[\int_0^1{f^{n+1}\left( x \right) \text{d}x}\geqslant \int_0^1{x^nf\left( x \right) \text{d}x} \]

(4)首先,我们有

\[\left( f^n\left( x \right) -x^n \right) \left( f\left( x \right) -x \right) \geqslant 0 \]

即有

\[f^{n+1}\left( x \right) +x^{n+1}\geqslant x^nf\left( x \right) +xf^n\left( x \right) \]

对上述不等式两边同时对\(\displaystyle x\)在0到1上积分,并利用不等式(2),我们得到

\[\begin{align*} \int_0^1{f^{n+1}\left( x \right) \text{d}x}+\frac{1}{n+2}&\geqslant \int_0^1{x^nf\left( x \right) \text{d}x}+\int_0^1{xf^n\left( x \right) \text{d}x} \\ &\geqslant \frac{1}{n+2}+\int_0^1{xf^n\left( x \right) \text{d}x} \end{align*} \]

因此

\[\int_0^1{f^{n+1}\left( x \right) \text{d}x}\geqslant \int_0^1{xf^n\left( x \right) \text{d}x} \]

Ngo Q A, Thang D D, Dat T T, et al. Notes on an integral inequality[J]. J. Inequal. Pure Appl. Math, 2006, 7(4).