星形线
- 直角坐标 \(x^{2\over3} + y^{2\over3} = a^{2\over3}\) ? (a>0)
- 参数方程
\[\begin{cases} x = acos^3t \\ y = asin^3t \end{cases} (a>0)
\]
- 图形

- 计算:
- 所围图形 D 的面积 A;
- A = 4 \(\int_0^a ydx = 12a^2 \int_0^{\pi\over2} sin^4tcos^2t dt = {3\over8} \pi a^2\)
- 它的全长 L;
- L = 4 \(\int_0^{\pi\over2} \sqrt{y^{'2}(t) + x^{'2}(t)} dt = 12a \int_0^{\pi\over2} sintcost dt = 6a\)
- D 绕 x 轴旋转而成的旋转体的表面积 S;
- S = \(2·2\pi \int_0^{\pi\over2} y(t) \sqrt{y^{'2}(t) + x^{'2}(t)} dt = 12 \pi a^2 \int_0^{\pi\over2} sin^4tcostdt = {12\over5} \pi a^2\)
- D 绕 x 轴旋转而成的旋转体的体积 V。(其中 \(D_I\) 表示 \(D\) 在第一象限的部分)
- V = \(2·2\pi\iint_{D_I} yd\sigma = 2\pi \int_0^a y^2(x) dx = 6\pi a^3 \int_0^{\pi\over2} sin^7tcos^2tdt = {32\over105} \pi a^3\)