Mapreduce实例——ChainMapReduce


使用ChainMapReduce处理文件,现有某电商一天商品浏览情况数据goods_0,功能为在第一个Mapper里面过滤掉点击量大于600的商品,在第二个Mapper中过滤掉点击量在100~600之间的商品,Reducer里面进行分类汇总并输出,在Reducer后的Mapper里过滤掉商品名长度大于或等于3的商品

实验数据如下:

表goods_0,包含两个字段(商品名称,点击量),分隔符为"\t"。

商品名称    点击量
袜子    189
毛衣    600
裤子    780
鞋子    30
呢子外套    90
牛仔外套    130
羽绒服    7
帽子    21
帽子    6
羽绒服    12
goods_0
package mapreduce10;

import java.io.IOException;
import java.net.URI;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.chain.ChainMapper;
import org.apache.hadoop.mapreduce.lib.chain.ChainReducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.io.DoubleWritable;

//09.Mapreduce实例——ChainMapReduce
public class ChainMapReduce {
    private static final String INPUTPATH = "hdfs://192.168.51.100:8020/mymapreduce10/in/goods_0";
    private static final String OUTPUTPATH = "hdfs://192.168.51.100:8020/mymapreduce10/out";
    public static void main(String[] args) {
        try {
            Configuration conf = new Configuration();
            FileSystem fileSystem = FileSystem.get(new URI(OUTPUTPATH), conf);
            if (fileSystem.exists(new Path(OUTPUTPATH))) {
                fileSystem.delete(new Path(OUTPUTPATH), true);
            }
            Job job = new Job(conf, ChainMapReduce.class.getSimpleName());
            FileInputFormat.addInputPath(job, new Path(INPUTPATH));
            job.setInputFormatClass(TextInputFormat.class);
            ChainMapper.addMapper(job, FilterMapper1.class, LongWritable.class, Text.class, Text.class, DoubleWritable.class, conf);
            ChainMapper.addMapper(job, FilterMapper2.class, Text.class, DoubleWritable.class, Text.class, DoubleWritable.class, conf);
            ChainReducer.setReducer(job, SumReducer.class, Text.class, DoubleWritable.class, Text.class, DoubleWritable.class, conf);
            ChainReducer.addMapper(job, FilterMapper3.class, Text.class, DoubleWritable.class, Text.class, DoubleWritable.class, conf);
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(DoubleWritable.class);
            job.setPartitionerClass(HashPartitioner.class);
            job.setNumReduceTasks(1);
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(DoubleWritable.class);
            FileOutputFormat.setOutputPath(job, new Path(OUTPUTPATH));
            job.setOutputFormatClass(TextOutputFormat.class);
            System.exit(job.waitForCompletion(true) ? 0 : 1);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    public static class FilterMapper1 extends Mapper {
        private Text outKey = new Text();
        private DoubleWritable outValue = new DoubleWritable();
        @Override
        protected void map(LongWritable key, Text value, Mapper.Context context)
                throws IOException,InterruptedException {
            String line = value.toString();
            if (line.length() > 0) {
                String[] splits = line.split("\t");
                double visit = Double.parseDouble(splits[1].trim());
                if (visit <= 600) {
                    outKey.set(splits[0]);
                    outValue.set(visit);
                    context.write(outKey, outValue);
                }
            }
        }
    }
    public static class FilterMapper2 extends Mapper {
        @Override
        protected void map(Text key, DoubleWritable value, Mapper.Context context)
                throws IOException,InterruptedException {
            if (value.get() < 100) {
                context.write(key, value);
            }
        }
    }
    public  static class SumReducer extends Reducer {
        private DoubleWritable outValue = new DoubleWritable();
        @Override
        protected void reduce(Text key, Iterable values, Reducer.Context context)
                throws IOException, InterruptedException {
            double sum = 0;
            for (DoubleWritable val : values) {
                sum += val.get();
            }
            outValue.set(sum);
            context.write(key, outValue);
        }
    }
    public  static class FilterMapper3 extends Mapper {
        @Override
        protected void map(Text key, DoubleWritable value, Mapper.Context context)
                throws IOException, InterruptedException {
            if (key.toString().length() < 3) {
                System.out.println("写出去的内容为:" + key.toString() +"++++"+ value.toString());
                context.write(key, value);
            }
        }
    }
}

结果:

原理:

一些复杂的任务难以用一次MapReduce处理完成,需要多次MapReduce才能完成任务。Hadoop2.0开始MapReduce作业支持链式处理,类似于工厂的的生产线,每一个阶段都有特定的任务要处理,比如提供原配件——>组装——打印出厂日期,等等。通过这样进一步的分工,从而提高了生成效率,我们Hadoop中的链式MapReduce也是如此,这些Mapper可以像水流一样,一级一级向后处理,有点类似于Linux的管道。前一个Mapper的输出结果直接可以作为下一个Mapper的输入,形成一个流水线。

链式MapReduce的执行规则:整个Job中只能有一个Reducer,在Reducer前面可以有一个或者多个Mapper,在Reducer的后面可以有0个或者多个Mapper。

Hadoop2.0支持的链式处理MapReduce作业有一下三种:

(1)顺序链接MapReduce作业

类似于Unix中的管道:mapreduce-1 | mapreduce-2 | mapreduce-3 ......,每一个阶段创建一个job,并将当前输入路径设为前一个的输出。在最后阶段删除链上生成的中间数据。

(2)具有复杂依赖的MapReduce链接

若mapreduce-1处理一个数据集, mapreduce-2 处理另一个数据集,而mapreduce-3对前两个做内部连结。这种情况通过Job和JobControl类管理非线性作业间的依赖。如x.addDependingJob(y)意味着x在y完成前不会启动。

(3)预处理和后处理的链接

一般将预处理和后处理写为Mapper任务。可以自己进行链接或使用ChainMapper和ChainReducer类,生成得作业表达式类似于:

MAP+ | REDUCE | MAP*

如以下作业: Map1 | Map2 | Reduce | Map3 | Map4,把Map2和Reduce视为MapReduce作业核心。Map1作为前处理,Map3, Map4作为后处理。ChainMapper使用模式:(预处理作业),ChainReducer使用模式:(设置Reducer并添加后处理Mapper)

本实验中用到的就是第三种作业模式:预处理和后处理的链接,生成得作业表达式类似于 Map1 | Map2 | Reduce | Map3