前面部分比较简单,就是无脑化式子,简单点讲好了。
首先肯定在\((x,y)=1\)时才考虑这个分数,要求纯循环的话,不妨猜猜结论,就是y必须和K互质。所以答案是\(\sum_{i=1}^n \sum_{j=1}^m [(i,j)=1] [(j,k)=1]\)。
然后用 \([(i,j)=1]=\sum_{d|i,j} \mu(d)\)大力化一化,很快就会得到:
\[\sum_{d=1}^{min(n,m)} \mu(d) \frac{n}{d} \sum_{d|j,j\le m}[(j,k)=1]
\]
\[=\sum_{d=1}^{min(n,m)} \mu(d) [(d,k)=1] \frac{n}{d} \sum_{j=1}^{\frac{m}{d}}[(j,k)=1]
\]
令后面那一坨\(\sum_{j=1}^{\frac{m}{d}}[(j,k)=1]=f(\frac{m}{d})\),它可以快速计算:
\[f(x)=\sum_{j=1}^x [(j,K)=1]
\]
\[=\sum_{j=1}^x \sum_{g|j,k} \mu(g)
\]
\[=\sum_{g|k}\mu(g) \sum_{g|j} 1
\]
\[=\sum_{g|k}\mu(g) \frac{x}{g}
\]
可以\(O(\sqrt k)\)计算。
回到原式
\[\sum_{d=1}^{min(n,m)} \mu(d) [(d,k)=1] \frac{n}{d} f(\frac{m}{d})
\]
这个显然可以分块吧,预处理一下\(\sum_{d=1}^{min(n,m)} \mu(d)[(d,k)=1]\)的前缀和就可以\(O(\sqrt n *\sqrt k)\)算答案了,因为是gcd的log,预处理做到2e7都不虚。
然后就有84分了。
考虑快速求\(F(k,x)=\sum_{d=1}^x \mu(d)*[(d,k)==1]\),同样拆后面的gcd。
\[F(k,x) =\sum_{d=1}^x \mu(d)*[(d,k)==1]
\]
\[=\sum_{d=1}^x \mu(d) \sum_{g|k,d} \mu(g)
\]
\[=\sum_{g|k} \mu(g) \sum_{g|d} \mu(d)
\]
\[=\sum_{g|k} \mu(g) \sum_{T=1}^{\frac{x}{g}} \mu(T*g)
\]
然后由于当\((T,g)\ne 1\)时\(\mu(T*g)\)显然=0。
\[=\sum_{g|k} \mu(g) \sum_{T=1}^{\frac{x}{g}} [(T,g)==1]*\mu(T)*\mu(g)
\]
\[=\sum_{g|k} \mu^2(g) \sum_{T=1}^{\frac{x}{g}} \mu(T)*[(T,g)==1]
\]
\[=\sum_{g|k} \mu^2(g) F(g,\frac{x}{g})
\]
然后递归算,顺便记忆化一下,另外当k=1时直接返回\(\sum_{i=1}^x \mu(i)\),因此要杜教筛预处理。
\(F(k,i)\)可以预处理一下\(k=K\)时x较小的若干项,会加快速度。
我根本不会算这个的复杂度,想到这后就直接去写了,极限数据一下就跑出来了就交了,别问我复杂度是多少,我不知道。复杂度应该和杜教筛差不多吧(如果对g讨论一下在x的\(\sqrt x\)段中的哪一段,这一段的k的约数统一计算的话)。
#include
#include
#include
#include
#include
#include
#include
#include