LaTeX 常用公式
操作手册
\(\LaTeX\)
出于对一些老花眼读者的关照,请如下操作(第一次右键):
效果(左键后):
对于想学而不是观赏 LaTeX 的人来说:
即可看到 TeX Commands。
序言
$ $
表示行内
$$ $$
表示独立
基础
\(a^{x+2y}_{i,j}\)
\(\dfrac{1}{x+\dfrac{3}{y}}\)
\(\dfrac{1}{x+\dfrac{3}{y}}\)
整体改动类
\(\Large{e^{i\pi}+1=0}\)
\(\boxed{a^x+b^y=c^z}\)
符号类
\(\leqslant \geqslant\) 珍爱生命,请用:\(\le \ge\)
\(\dots \quad \vdots \quad \ddots\)
\(\pm\)
\(\equiv \pmod{p}\)
\(\% \& \_\)
\(\in \subseteq \subsetneqq\)
\(\cap \cup \lor \land\)
\(\forall \exists\)
\(\perp \angle \ 45^\circ\)
\(\sqrt[n]{x}\)
\(\because \therefore\)
\(\ne \not= \not\leqslant \not\in \not\subseteq \not\exists\)
(\not
是在下一个字符上画斜杠)
矩阵类
\(\begin{matrix}a&b\\c&d\end{matrix}\)
\(\begin{vmatrix}a&b\\c&d\end{vmatrix}\)
\(\begin{bmatrix}a&b\\c&d\end{bmatrix}\)
\(\begin{Bmatrix}a&b\\c&d\end{Bmatrix}\)
\(\begin{pmatrix}a&b\\c&d\end{pmatrix}\)
Aligned&Cases
\(\begin{aligned} 3 & = 1+1+1 \\ & = 1+2 \end{aligned}\)
\(\begin{aligned} a_1 & = 1 \\ a_2 & = 2 \\ & \dots \\ a_n & = n \end{aligned}\)
\(f(x)=\begin{cases} x & x\geqslant0 \\ x^{-1} & x<0 \end{cases}\)
箭头类
\(\implies \iff \leftrightarrow\)
函数类
\(\operatorname{lcm}(x,y)\)
\(\gcd(x,y)\)
\(\min(x,y)\)
\(\max(x,y)\)
求和类
(上文函数类+ \limits
也能达到效果)
\(\sum\limits_{i=1}^n a_i\)
\(\prod\limits_{i=1}^n a_i\)
\(\lim\limits_{n\to\infty}x_n\)
\(\int_{-N}^{N}e^x \, dx\)
括号类
\(\binom{4}{2}\)
\(\left(\dfrac{y+\dfrac{2}{3}}{x+\dfrac{2}{3}}\right)^5\)
此功能(使用 \left
和 \right
)可以推广到不同的括号
\(\left\lfloor\dfrac{1}{2}\right\rfloor \left\lceil\dfrac{1}{2}\right\rceil\)
字体与希腊字母类
\(\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega\)
\(\alpha \beta \gamma \delta \epsilon \zeta \eta \theta \iota \kappa \lambda\)
\(\mu \nu \xi \omicron \pi \varepsilon \varrho \varsigma \vartheta \varphi\)
\(\aleph\) 希伯来文
\(\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\)
\(\mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\)
\(\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\)
空格类
下面 \(m\) 均表示一个中文字符的宽度,即两个英文字符的宽度。
\(x,y\) 均为演示需要,重点为中间空隙大小。
宽度为 \(-\dfrac{m}{6}\)
\(x \! y\)
宽度为 \(0\)
\(xy\)
宽度为 \(\dfrac{m}{6}\)
\(x \, y\)
宽度为 \(\dfrac{2m}{7}\)
\(x \; y\)
宽度为 \(\dfrac{m}{3}\)
\(x \ y\)
宽度为 \(m\)
\(x \quad y\)
宽度为 \(2m\)
\(x \qquad y\)