[日常训练]Z国特色社会路


Description

小$W$非常喜欢社会主义,这天他开始研究它的优越性。
他发现它们国家十分乐于修建特色的社会主义道路。具体的说,$Z$国有$n$座城市,由$m$条有向边连接,城市从$1$编号。
特色的地方在于,时不时会有一些$LD$下来在城市间视察,视察时他会从城市$b_i$开始,最终到$e_i$结束。每次视察都会走过一些路,这些路自然会被$LD$所注意。
更具体地, $LD$会重修自己走过的路。每条边重修需要的费用也不相同。
而如果视察结束后, $LD$不在一开始自己所在的城市$b_i$,则会要新建一条$VIP$道路送他回家,也就是只有他自己能通过的道路。这需要花费固定的费用$C$,这条道路走过后便会拆毁。
若某个城市没有被$LD$经过,则这个城市的下级$LD$会被勒令整改,也要花费$C$的费用。
现在有$k$年,每年有若干个$LD$下来视察(可能$0$个),每年的固定费用$C$不同。小$W$想知道对于每一年怎样安排他们的视察人数和视察路线,能使得总花费最小。注意,领导至少要视察一条边。
注意,若一条道路被同一个人多次经过,则每次都会重修这条路。多个人多次经过也是一样。没有被$LD$经过的城市,更具体的说是没有被任何$LD$经过。

Input

第一行三个整数$n,m,k$。

接下来$m$行每行三个整数$s_i,t_i,v_i$,表示$s_i$和$t_i$间的有向边,重修需要花费$v_i$的代价。接下来$k$行每行一个整数,表示这一年的固定费用$C$。

Output

输出$k$行,每行一个最小花费。

Sample Input

6 5 3 6

1 3 2

2 3 2

3 4 2

4 5 2

4 6 2

10

Sample Output

21

32

HINT

$2\;\leq\;n\;\leq\;250,1\;\leq\;m\;\leq\;30000,1\;\leq\;k\;\leq\;10000,s_i\not=t_i,1\;\leq\;v_i,C\;\leq\;10000$,一对城市间可能有多条单向路,图中无自环。

Solution

先求出原图的最短路建一张完全图,任意两点间的边权为原图中两点的最短路长度.

可以发现,每个点只会被最优路径经过一次.

由于一个点只被经过一次,且要找出一些路径使得它们的和最小,这非常想最小路径覆盖的模型,拆点建边.

接着做最小费用最大流,若流了$k$路径,则我们需支付$(n-k)C$.

证明:若这$k$路径首尾相连成一个环,则需对剩下$n-k$个城市支付$C$;若不是环,则这$k$路径经过$k+1$个点,需对剩下$n-k-1$个城市支付$C$,以及为$LD$修路回去的$C$.

接下来要决定流几条路径.显然,做费用流时,每次得到的路径的费用是单调不降的,也就是可以在做费用流时判断:若当前的费用$>C$,则停止费用流,剩下的城市用$C$补。

由于有多组$C$,所以考虑提前将所有$n$次流后所得到的费用用前缀和存下来,每次二分出需要流的路径条数.

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define N 505
#define M 125505
#define INF 1000000000
using namespace std;
struct graph{
    int nxt,to,f,w;
}e[M];
struct edge{
    int s,t,w;
}a[M];
struct tag{
    int e,v;
}pre[N];
int d[N][N],g[N],f[N],sum[N],dis[N],c,n,m,s,t,ti,cnt=1;
bool inq[N];queue q; 
inline int read(){
    int ret=0;char c=getchar();
    while(!isdigit(c))
        c=getchar();
    while(isdigit(c)){
        ret=(ret<<1)+(ret<<3)+c-'0';
        c=getchar();
    }
    return ret;
}
inline void addedge(int x,int y,int f,int w){
    e[++cnt].nxt=g[x];g[x]=cnt;
    e[cnt].to=y;e[cnt].f=f;e[cnt].w=w;
}
inline void adde(int x,int y,int f,int w){
    addedge(x,y,f,w);addedge(y,x,0,-w);
}
inline bool spfa(int u){
    for(int i=1;i<=t;++i){
        dis[i]=INF;inq[i]=false;
    }
    dis[u]=0;q.push(u);inq[u]=true;
    while(!q.empty()){
        u=q.front();q.pop();inq[u]=false;
        for(int i=g[u];i;i=e[i].nxt)
            if(e[i].f>0&&dis[u]+e[i].w>1; 
            if(f[mid]<=c) l=mid;
            else r=mid-1;
        }
        printf("%d\n",sum[l]+c*(n-l));
    }
}
int main(){
    freopen("road.in","r",stdin);
    freopen("road.out","w",stdout);
    Aireen();
    fclose(stdin);
    fclose(stdout);
    return 0;
}